原 中国普洱茶网 整体品牌升级,更名为「茶友网」

茶叶含铜量

找到约83条结果 (用时 0.008 秒)

六大茶山再次通过OFDC有机产品认证

  2015年6月30日,云南六大茶山茶业股份有限公司再次顺利通过了南京国环有机产品认证中心的有机认证。六大茶山自2002年成立以来,公司先后在2004年3月获得有机食品认证、2008年12月六大茶山凤庆茶厂获得有机生产认证,公司岔河原料基地同时获得有机基地认证。今年初,公司再次向南京国环有机认证中心提出申请,对贺开古茶基地及六大茶山勐海普洱茶厂进行有机认证。

  

  2015年4月,南京国环有机产品认证中心对六大茶山贺开古茶基地以及六大茶山勐海普洱茶厂进行现场审核有机产品认证。

  

  南京国环有机产品认证中心是经国家认证认可监督管理委员会批准、中国合格评定国家认可委员会和国际有机农业运动联盟认可机构认可的专业从事有机产品和良好农业规范认证的认证机构。自2012年3月1日起,认证机构对新申请有机产品认证企业及已获认证企业都依据新版《有机产品认证实施规则》和GB/T19630-2011新版《有机产品》国家标准执行。

  

  南京国环有机产品认证中心的检查员到六大茶山勐海普洱茶厂进行检查、认证

  

  有机茶叶认证

  有机茶是一种按照有机农业的方法进行生产和加工,在其生产过程中,完全不施用任何人工合成的化肥、农药、植物生长调节剂、化学食品添加剂等物质生产出的,并符合国际有机农业运动联合会(IFOAM)标准,经有机(天然)食品颁证组织发给证书。有机茶叶是一种无污染、纯天然茶叶。

  

  审核项目及标准

  茶厂环境

  选择远离城市、工业区和村庄的地区。要求空气符合国家大气环境质量一级标准,灌溉用水的水质符合国家地面水环境质量一类标准,土壤中重金属含量必须低于国家有机茶加工技术规定标准。生产、加工、贮藏场所及周围场地均应保持清洁卫生,禁止使用化学药品。

  

  茶园

  种子种苗必须来自有机农业生产系统,不使用由基因工程获得的品种苗木。茶园园地生态环境优良,周围布置好绿化带,有机茶与非有机农业生产用地应有一定的隔离带。园地土壤深厚肥沃,通透性好,有机质含量>1.5%,pH值4.5至6.5,有效土层疏松,生物活性强。

  

  土壤

  1至3年生幼龄茶园,应在行间合理间作绿肥,以培肥改良土壤。

  在雨季来临前和秋冬季施基肥后用无污染的秸秆、山青等覆盖土壤,减少水、土、肥流失,夏天保水防旱,冬天保温防冻。

  对土壤肥沃、无杂草、覆盖度高的茶园,应少(免)耕。提倡利用生物(如蚯蚓等)改善土壤结构,提高土壤肥力。

  严禁使用化学类除草剂、增效剂和土壤改良剂。

  

  施肥技术

  生产有机茶的茶园可施用没有受重金属、农药及其它有害化学物质污染,并经过无害化处理的有机肥,如天然腐殖酸盐类、采用纯生物技术生产的有机液肥、菌肥等。

  禁止在有机茶园施用的肥料,人工化学合成的各种化肥,各种复合肥、复混肥、稀土元素肥料、生长素及人工合成的各种多功能叶面营养液及城乡垃圾、工厂废渣等。

  

  病虫害防治

  利用天敌和生物农药防治病虫害。严禁使用化学农药。

  调查了解病虫发生情况,采取人工方法摘除群集的幼虫卵叶或病枝、病叶。

  秋茶结束后允许使用石硫合剂、波尔多液等有机农业生产许可的药物封园,以减少病虫发生量。注意波尔多液的使用量以不使茶叶含铜量超标为度。

  

  采收

  根据生产有机茶的类型,按要求采摘相应嫩度的鲜叶,遵循采留结合、量质兼顾,和因园制宜的采摘原则。

  手工采茶和机械采茶均可,但采茶机动力必须使用无铅汽油,防止汽油、机油污染茶园土壤和茶树。

  盛装鲜叶应使用清洁、通风良好的竹制网眼茶篮或篓筐,装叶量不得超过150千克/立方米,不得使用布袋、塑料袋软包装材料。

  

  加工技术

  有机茶加工必须执行国家食品卫生法和食品加工标准。

  加工的原料必须来自颁证的有机茶园。加工设备必须由不含污染物的材料制成。

  加工过程只能以物理方法处理,如自然发酵。禁止使用化学处理方法。禁止使用任何人工合成的食品添加剂、维生素和其它添加物。

  加工、包装有机茶的工作人员要定期检查身体,不允许患传染病的人员上岗。

  六大茶山公司接下来将一如既往高标准、严要求,保护茶山的一草一木,保证茶厂干净、卫生的生产加工环境,生产出更多更好符合国际市场需求的优质有机普洱茶产品。

  

茶叶之美,解码普洱茶艺术创作素材之密

生命的常态不是如何去养生

而是在各种折腾中去成长

在成长中不断的修正

在修正中不断的成长



  -  茶道 | 禅修 | 琴韵 | 梵音  


点击上面音频免费聆听音 


茶山是普洱茶艺术创作根基,在这个根基上生长的,则是普洱茶艺术创作的素材——原料(鲜叶)。有道是,“巧妇难为无米之炊”,普洱茶鲜叶是茶树顶端新梢的总称,包括芽、叶、梗。鲜叶常称生叶、茶菁、青叶等,它是形成普洱茶艺术品品质的物质基础。在普洱茶艺术创作过程中,必须对原料素材的性质有充分的认识与理解,并通过一定的制程(工艺)和普洱茶艺术家的艺术灵感即兴发挥,使鲜叶内含化学成分发生一系列的物理和化学变化,从而获得形与质都符合普洱茶艺术品的品质特征。因此,要创作出好的普洱茶艺术品,必须首先了解鲜叶内含化学成分的性质和这些化学成分在制茶过程中的变化,只有这样,才能采取适当艺术及工艺,获得优质的普洱茶艺术品。

了解普洱茶鲜叶的内含化学成分的性质,就是明白普洱茶鲜叶的物理化学性状。只有明白普洱茶鲜叶的物理化学形状,才能深刻理解普洱茶艺术创作的素材,并加以良好发挥运用,进行普洱茶艺术创作。

普洱茶鲜叶中的化学成分到目前为止,经过分离鉴定的已知化合物约有500种。其中有机化合物达450种以上,其主要成分归纳起来有如下10余类


    1、水分

    水分是鲜叶的主要成分之一,鲜叶水分包括外表水和结构水,夏茶平均含水量最高约为75%左右,秋茶次之,春茶最低约为72%左右。芽头、一叶、二叶含水量依次降低。一般来说,嫩度高含水量高,老叶含水量低,茎梗(嫩)含水量也较高,除去表面水,4千克鲜叶可制得1千克青毛茶(干茶)。


2、茶多酚

茶多酚(Tea Polyphenols)是茶叶中多酚类衍生物组成的较为复杂的混化合物的总称。茶多酚属于黄酮(Flavonoids)化合物,这类物质数目很多,广泛存在于自然界植物中(例如蚕豆、马铃薯、茶叶、藕等),是形成茶叶色香味的主要成份之一,也是茶叶中最具保健功能的主要成份之一。

这里要对大中叶种及小叶种作组织细胞结构比及化学成分的进一步论述:不同的地域(热带、亚热带、温带)有不同的光照时间,光照强度和光质,故形成了各种不同树型、叶形和内质。在热带和亚热带,以大中叶型叶为主,在温带,以中小叶型叶为主。大叶种叶子角质层厚度约为2um~4um,通常只有一层栅栏细胞,其栅栏组织,海绵组织比约等于1:2。中小叶种叶子角质层厚度约为4um~8um,其栅栏组织细胞有2~3层,栅栏组织,海绵组织比约等于1:1。视其地域环境与叶子结构和内含成分之间的关系,据严学成《茶树形态结构与品质鉴定》一书研究:茶树叶片中的栅栏组织中主要含化学物质是色素(叶绿素)和类脂。海绵组织中主要含有较高量的多酚类物质。由些得出,云南省外的小叶种叶子栅栏组织含有2~3层细胞,故其色素含量高,类脂含量也较高,多酚类物质含量较低,这些品种适宜制绿茶、青茶等,品质特点为色绿、香高、味淡醇雅。而云南大中叶品种其栅栏组织只有一层细胞,海绵组织较厚,栅栏组织,海绵组织比为1:2,这种叶子叶绿素含量稍低,多酚类含量却很高,最适宜制普洱茶,可达到浓、强、酽的标准。所以全国在不同地区生产不同的茶类,这一切乃是自然选择的结果。

云南普洱茶的茶多酚含量最高,大约25%~35%,占鲜叶物质总量三分之一左右,占茶汤水浸出物总量的四分之三,它对普洱茶艺术品的色、香、味的形成影响很大。其主要成分由儿茶素、黄酮醇、花青素、酚酸等几大类物质所组成.


    (1)儿茶素

儿茶素类是鲜叶中多酚类化合物含量最丰富的一类,占多酚类化合物总量的70~80%,没食子儿茶素和没食子酸酯是鲜叶中含量最多的一族,占总量的50%,特别是芽中含量更高。酯型儿茶素具有强烈收敛性,苦涩味较重,而简单儿茶素收敛性较弱,味醇和而不苦涩。这种具有涩味和收敛性特点,也称为“单宁”(是鞣质译音)。


(2)黄酮醇类  

     黄酮醇类是儿茶素的氧化体,呈黄色,属黄酮类,在茶叶中发现10多种,其含量占鲜叶干物质的1.3~1.8%。如槲皮甙和杨梅甙等。这类化合物是溶于水的黄色化合物,容易发生自动氧化,是多酚类化合物自动氧化部分的主要物质。

(3)花青素类

花青素是一种类性质比较稳定的色原烯衍生物,种类很多,呈青色、铜红、暗红、暗紫色等,含量很少,随茶树变异而增高,如紫芽种等。

(4)酚酸类

酚酸类是一类分子中具有羧基的芳香族化合物,它多为没食子酸、咖啡碱、鸡纳酸的缩合衍生物,总量大约占鲜叶干重的5%左右。

3、蛋白质与氨基酸

蛋白质与氨基酸是两类近缘含氮化合物,蛋白质由氨基酸合成,在一定条件下,又能分解成氨基酸。

    [1]、蛋白质

就植物体内糖、脂肪、蛋白质三大物质而言,对植物生命活动起主导作用的是蛋白质,它且有多种多样的生物功能,如体内的酶、核酸、激素、生物模、原生质、叶绿体等都是蛋白质组成的,植物生命和普洱茶品质生命都离不开蛋白质,因此,研究和了解蛋白质的结构和功能,也是探讨生命奥秘的必经之途。


蛋白质的组成特点是含有氮,蛋白质占生物组织含氮量物质的大部分,故可将生物组织的含氮量近似作为蛋白质所含量。大多数蛋白质的含氮量相当接近,约为15%~17%,平均为16%,样品中每克氮的存在,大约表示该样品含有100/16=6.25克的蛋白质。普洱茶鲜叶中含氮3.5%~4.5%,蛋白质含量为21%~28%,蛋白质中除了含有氮外,还含有碳、氢、氧三种元素和硫、磷、铁、铜、锰、锌、钼等,有的蛋白质还含有碘、氯和硒。蛋白质的结构复杂,目前为止,我们对蛋白质的化学结构了解不多,不能采用化学结构来分类,也没有一个合理的统一方法。如按其在不同的溶剂中的溶解状况,可以分为清蛋白,球蛋白、醇溶蛋白、谷蛋白。如按其功能来分,可以分为酶蛋白结构蛋白、贮藏蛋白。如按其存在状态来分,可以分为单纯蛋白和结合蛋白两大类。


蛋白质最大特点:(1)高温(78℃以上)低温(-10℃以下)时会凝固,(2)常温常压,蛋白酶作用下会发生水解,生成氨基酸。所以,生产、贮存普洱茶一定要在常温常压下,高温、低温都会阻断蛋白质水解,使普洱茶艺术品失去活性而停止转化。

    [2]氨基酸

氨基酸是茶叶中具有氨基和羧基的有机化合物,是茶叶的主要化学成分之一,目前有26种之多,大约有20多种存在于蛋白质里,即组成蛋白质的氨基酸,另6种是以游离态存在于叶内,称为游离氨基酸,它约占茶叶干重1%~4%,其中茶氨酸占70%左右,是组成茶叶鲜爽香味的重要物质之一,对普洱茶品质有一定影响。


氨基酸有几个重要性质:(1)氨基酸易溶于水(2)氨基酸熔点很高,一般在200℃以上易分解。(3)氨基酸有光学活性(4)氨基酸有化学两性电荷性质等,了解掌握氨基酸这些特性,对普洱茶艺术创作有着极为重要的作用,因为它是普洱茶艺术品鲜爽、香气的基础物质,必须精心保护,比如,为了保持普洱茶滋味,在贮藏时必须避免受潮,避免光照,以免茶品氨基酸溶解、挥发、流失。



4、生物碱

生物碱是指植物体内的碱性含氮化合物,因氮都含在杂环内,也称杂环化合物。它们不是蛋白质的直接水解产物,具有复杂的组成和很强的生理作用,生物碱在古希腊时就被认为是能治疗一些疾病的物质,是最古老的药物之一。

茶叶中的生物碱主要有茶叶碱、咖啡碱、可可碱等,合称为生物碱。在普洱茶鲜叶中含量为4%~5%,其中以咖啡碱含量最多,其他两种含量甚微。

(1)生物碱能刺激中枢神经,兴奋大脑皮层,减少疲乏,故能增强思维,提高工作效力。

(2)生物碱是血管舒张剂,提高胃液分泌量,帮助消化。

(3)生物碱能加快血液循环,增加肾小球的过滤率,起利尿作用。

(4)生物碱对支气管哮喘有一定疗效。

(5)生物碱食入人体以后,最后产生去甲基作用,以尿酸形式被排出体外,不会残留于体内,不产生毒素。

     生物碱是含氮物质,在芽叶含量高,随着茶叶生长发育,含量逐渐下降。嫩叶比老叶多,春茶比秋、夏茶多。遮光茶园比露天茶园多,大叶种比小叶种多。

生物碱可提高滋味的鲜爽度,有抑制蛋白质凝固作用,有利于茶汤滋味的形成。咖啡碱能与多酚类化合物,特别是与多酚类的氧化产物茶红素、茶黄素形成络合物,不溶于冷水而溶于热水。当茶汤冷却之后,便出现乳脂沉淀,这种络合物便悬浮于茶汤中,使汤混浊呈乳状,称为“冷后混”,这种现象在高级普洱茶中尤为明显。说明普洱茶艺术品中有效化学成分含量高,是原料品质良好的象征。

5、糖类

糖类是由碳、氢、氧三种元素组成的有机化合物,习惯上称为碳水化合物,但较为确切的定义是多羟基醛或多羟基酮以及水解后能够产生多羟基醛或多羟基酮的一类有机化合物。在自然界中分布极广,如水果、蔬菜、甘蔗等等。

糖类物质在普洱茶(包括鲜叶)中存在形态主要有三种形态,一种是游离态,是可溶性的,例如葡萄糖、蔗糖,第二种是结合态的,必须经过某些水解酶作用,可水解为可溶性的糖,例如黄酮醇类和花青素结合的葡萄糖和鼠李糖,第三种是不溶性的,例如纤维素、淀粉、木素、果胶等。

糖类在普洱茶鲜叶中含量达25%左右,其中可溶性的(包括在鲜叶的结合态存在的,经过加工后水解出可溶性糖和糖基的)约占晒青毛茶的4%左右,其余部分均为不溶性的,不溶性糖类(果胶物质等结合多糖,纤维素、木素等)在普洱茶中主要是构成细胞壁物质,起到支撑茶叶片有一定形状作用,它们的含量多少决定了茶叶的老嫩程度、嫩叶低于老叶。


可溶性糖类(包括结合态在制茶中水解后的部分以及长期存放酶促水解后增多部分)是普洱茶汤滋味和香气的来源之一,它们是茶汤甜味的主要成分,对茶的苦味和涩味有一定的掩盖和协调作用,这部分糖含量越高,茶滋味越甘醇而不苦涩,这也是越陈越香的原理之一,更是越陈越甜越甘醇,糖含量不断增加(高分子糖水解断链变低分子糖而溶于水),普洱老茶苦涩逐渐减弱而甜度不断增加的机理原因之一。


6、类脂类物质

   凡是利用乙醚、丙酮、乙醇、苯、石油醚等有机溶剂提取的生物体内的物质,统称为类脂类物质,其分类如下:

①脂质类物质。脂质类物质不溶于水,而溶于有机溶剂。脂质是生物膜的结构成分,例如质膜、液泡膜、核膜、细胞质内部的网膜、叶绿体膜、线粒体膜等,由甘油和脂肪酸组成的脂,习惯称为油脂,主要贮藏于茶籽中。普洱茶茶籽的含油量约40%~45%,其它省茶种的茶籽含油量为30%~35%。蜡在生物体内常与脂肪共存并分散在细胞中,也存在于叶片的角质层中,也覆盖于果实角质层及果皮中。蜡质含量高,叶质硬,制茶不易成形,被认定是粗老料的指标,蜡质的含量一般是老叶大于嫩叶。普洱茶蜡质较其它茶种低,紫色芽叶高于黄绿色芽叶。

②类脂物质除茶叶皂素以外,都是给茶叶带来良好的汤色,香气,滋味及丰富营养的物质。这类物质主要有以下三类:

a.萜烯类

   凡是分子中含有C10H16的不饱和碳氢化合物,称为萜,“萜”字在化学上指10的意思,“烯”是指化合物且有双键,此类物质性质活泼,可以氧化、加氢、裂解及意想不到的分子重排,此类物质在普洱茶制作过程中经过热、力、酶等作用,发生复杂的变化,是构成茶叶香气的重要成分。普洱茶中单萜类物质有牻牛儿醇、香叶醇、橙花醇。倍半萜有橙花叔醇、二萜有维生素A、三萜有茶叶皂素、四萜有类胡萝卜素等。

b.叶绿素

   主要集中在叶绿体内,叶绿体是绿色植物进行光合作用的场所,是植物细胞中微小的绿色工厂,能将光能转化成化学能,完成地球贮存太阳能的最重要的生物过程。在叶绿体组成成分中,约有50%为蛋白质,40%为脂质,其余为水溶性的小分子。脂质部分主要是叶绿素约占23%,其次是类胡萝卜素约占5%,其它还有磷脂,糖脂和质醌等化合物。

    叶绿素的含量与茶叶产量和品质的关系极大,叶绿体是茶树光合作用的器官,茶树体内物质(水分除外)90%是光合作用的直接或间接产物,10%是根中吸收的物质转化来的,因而产量与叶绿素含量的关系是可想而知的,可以说没有叶绿素,地球上的植物世界,乃至动物世界就不可能存在。

茶树中的叶绿素含量多少与茶树本身的生长条件有密切关系,云南因为光照强,且光照时间长,叶绿素含量比其它省低,叶片呈嫩黄绿色,特别适宜制普洱茶和红茶。其它省因光照时间短,光照也较云南弱,故其叶片厚,叶绿素含量多,叶色为深绿,特别适宜制绿茶和青茶(清汤绿叶)。但过高的叶绿素含量,如墨绿色叶子(老叶),因其它条件差,纤维素类、脂质类含量过高,也是制不出好茶的。

c.类胡萝卜素

   类胡萝卜素分子结构中含有4个C10H16,所以也称四萜,习惯把类胡萝卜素分为复烯烃类和复烯醇类两大类:复烯烃类以胡萝卜素为主,复烯醇类通称叶黄素。类胡萝卜素在茶叶中含量约为0.05%左右,它不但与叶绿素一道进行光合作用,参与机体的新陈代谢。更为重要的是对普洱茶香气带来极好的影响,类胡萝卜素的衍生物α和β-紫萝酮、茶螺烯酮、二氢海葵内脂和萜品松等四种芳香物质,赋予普洱茶更多的花香、甜香和温和甜美元素。高山茶叶胡萝卜素含量是平地茶叶的1倍以上。普洱茶的胡萝卜素含量是中国茶的2倍。自古以来认为“高山出好茶”,“普洱茶味最酽,最温和内敛”是有其科学道理的。

(7)维生素

    维生素(Vitamin)是小分子有机物,化学结构各不相同,有的是胺类,有的是酸类,有的是醇或醛类,还有属于固醇类,茶叶中含有多种维生素,如有VA,Vo,Ve,Vk,Vc,Vp,Vu,B族多种维生素和肌醇等。普洱茶中维生素含量约为0.6%~1%左右。人和动物不能自行合成维生素,故植物是人体和动物中维生素主要来源。

    维生素是维护身体健康,促进长生发育的调节生理功能所必需的一大类有机物质。在人体主要影响氧化还原过程,调节物质代谢和能量转换,起到像酶和激素一样的调节作用。人体内维生素含量不足或过量均有碍健康,茶叶中的维生素可称为“维生素群”,人们长期科学合理饮茶,可使“维生素群”作为一种复方维生素来补充,并满足人体对维生素的需要,增进身体健康。

(8)芳香物质

    茶叶中的芳香物质是种类繁多具有挥发性物质的总称。芳香物质在茶叶中的含量并不多,一般鲜叶中含量为0.005%~0.03%,但它的组成极为复杂,归纳起来碳氢化合物、醇类、醛类、酮类、酯类、内酯类、羧酸类、酚类、含氧化合物、含硫化合物等10余类,由于分别含有羟基、醛基、酯基香气基因,所有物质均对普洱茶香气有一定的影响,如大多数酯类具有水果香,芳樟醇具有百合花和玉兰花香,香叶醇是具有玫瑰花香,醛类具有青草香,糠醛类具有裸麦面包香。茉莉酮又称素馨酮,具有水果般素馨香或强烈而优美的茉莉花香,紫萝酮具有木香等等,普洱茶除具有很多香气物质外,它特有沉香醇及其氧化物陈香,及微生物发酵的氧化而形成的熟香等等。普洱茶的香气成分大约有612种之多,它的香气是持久的,不像其它茶类的香气那样短暂。

普洱茶香味的刺激具有兴奋和活跃高级神经系统的作用,它能给予人们以兴奋愉快之感,当喝上一口香味怡人的好茶时,会感到精神振奋,头脑清醒,疲劳之感也随之消失。人们青昧普洱茶艺术,很大程度是因为香,这种香不仅停留在气上,更应将香收敛入汤中,达到最大的汤香极限,这就是普洱艺术的制香原理。所以汤香是评判普洱茶的方法之一。所以普洱茶艺术的香与味绝不分离,他们能更加的融为一体,浸入人的味蕾细胞,浸入人的肺腑,真是沁人心脾。

(9)酶类

    茶树体内存在多种酶。在鲜叶中的酶,对茶叶品质形成影响较大的有水解酶和氧化酶,水解酶中有蛋白质酶、淀粉酶等。氧化还原酶中有多酚氧化酶、过氧化氢酶、过氧化物酶、抗坏血酸氧化酶等,这些酶在制茶过程中的化学变化具有重要作用,特别是多酚氧化酶,过氧化物酶是形成茶叶品质的决定因素。整个普洱茶艺术的生命过程就是酶化学。尤其在普洱茶科学存放中都离不开酶的化学原理。酶促反应是普洱茶陈化中最为重要的机理之一。酶的活性是普洱茶艺术生命的具体体现。

(10)色素

    茶鲜叶中含有各种色素,主要是叶绿素、叶黄素、花青素、花黄素、胡萝卜素等,在普洱茶汤里,色素更表现得丰富多彩。生普经过长时间存贮氧化,熟普经过微生物发酵,色素会依次出现茶绿素、茶黄素、茶红素、茶褐素,颜色不断由淡变深,由浊变亮。这是普洱茶又一大景观。

(11)无机化合物(除C碳、H氢、O氧、N氮)

    茶叶无机成分中含量最多的是P磷、K钾,其次是Ca钙、Mg镁、Fe铁、Mn锰、Al铝、S硫、Si硅,微量元素有Zn锌、Cu铜、F氟、Mo钼、B硼、Pb铅、Cd镉、Na钠、Co钴、Se硒、I碘、Br溴、Cr铬。

    无机化合物的元素是指除C碳、H氢、O氧、N氮元素外的其它金属和非金属元素,也称矿质营养元素,在各个生物学过程中这些元素都起着及其重要的作用,遍及整个生命科学。在特定的氧化状态下,仅有特定的金属离子能够满足那种必不可少的催化作用或结构要求。因此,可以认为金属离子决定生物体复杂的生物过程。从普洱茶树整个生长过程,制作加工过程,贮藏科学管理过程中都已论证了,金属离子许多酶的辅酶和辅基,在酶促反映中起催化剂作用,诸如基团转移,氧化还原或水解过程等。另一方面,金属离子在机体内起着渗透调节剂的作用,调节机体内酸碱平衡,在维持细胞膜功能的完整上起着重要作用。

    研究表明,矿质元素缺乏会引起人体多重疾病,硒与克山病和肝病,铬与粥样动脉硬化,锌与智力发育健康,铅与免疫力强弱,锌钙比与高血压发病率,氟与龋齿病发病率,矿质元素总水平与痛风病等关系均已得到证明。矿质元素在机体内既不能自行形成,又不能消失,它只能随食物摄入,为机体提供恒定的内循环。不少金属离子在其富余时可以储存,在缺乏时可以动用调节,所以矿质元素对机体的电解质平衡有着不可代替的作用,如若机体内电解质失平,将会导致机体不能健康和健全的生长发育。

    普洱茶树是一种多年生长的木本植物,生长过程中选性地从环境和土壤中富集多种矿物质元素。为其生长发育所需,其决定因素是土壤内质和茶树品种。矿物质元素总量为茶叶经过高温灼烧残留下来的物质,总称为“灰分”,约占干毛茶5%左右。灰分有水溶性和水不溶性之分。

    普洱茶必需大量元素有C碳、H氢、O氧、N氮、P磷、K钾、S硫、Ca钙等八种,必需微量元素有Mg镁、Fe铁、Mn锰、Cu铜、B硼、Na钠、Si硅、Zn锌、Mo钼等九种,非必要元素有Al铝、F氟、Se硒、As砷、Ni镍、I碘、Cr铬、Cd镉、Pb铅、Co钴等十种,其中Al铝、F氟、Se硒三种元素对茶树来讲属非必要元素,但它们在普洱茶成品中的含量高,更有利于人体健康。

    综上所述,上述十一类化合物协调发挥,构成了普洱茶的色、香、味、质,鲜叶质量的好坏是决定普洱茶艺术的物质基础,在人们生活质量不断提高的今天,健康长寿是人们的渴求,无公害的绿色食品深受青昧。对鲜叶质量要求除了新鲜匀净以外,还要求无公害,无农药残留,不施用化肥,多环芳香烃类残留,重金属残留等都要符合国内国际允许残留标准。

宁井铭教授万字长文:“十三五”茶叶科技研究进展

按:《中国茶业创新白皮书(2021)》已正式发布。

本白皮书科技创新部分,由安徽农业大学宁井铭教授编写。其中,茶科技创新方面的部分生产应用,已单独发布。本文为按照综述体例的内容,全文约1.4万字,并列明106篇参考文献。

一、品种选育

1、茶树品种选育技术研究

(1)茶树种质资源研究

茶树种质资源是茶树育种、遗传研究和生产利用的物质基础,也是茶产业持续发展的潜力所在[1]。种质资源收集与保存的数量多寡和质量优劣直接影响着茶树育种和茶树生物学研究的深度和广度。2015-2020年开展了第三次全国农作物种质资源普查与收集行动,对湖南、浙江、福建、广东、安徽等多省的茶树种质资源进行了调查、征集和收集。

作为世界茶树的起源中心,我国一直对茶树资源的考察和收集工作十分重视,早在20世纪80-90年代,就先后组织了5次大规模的茶树种质资源区域性考察,征集各类茶树资源1300份。在“十三五”期间,利用优异茶树种质资源培育了新品种。通过系统选育、人工杂交、辐射诱变等手段,共育成无性系新品种近300个,其中系统选育品种超过70%、特异资源的开发和利用已成为近年来推动茶产业发展的重要手段,展现出巨大的市场潜力。优异种质资源可以直接用于茶树新品种选育或者间接为茶树遗传改良提供优良基因来源,因此快速、准确地鉴定出育种上迫切需要的优异资源及其蕴含的有利基因是当前的研究重点。

(2)茶树遗传学研究

茶树具有自交不亲和特点,由于大量的杂交和多倍化,茶树在分类学和系统发育上被列为植物中最具挑战性的分类群之一。“十三五”期间,结合二代、三代测序技术等,安徽农业大学、华南农业大学、华中农业大学、中国农业科学院茶叶研究所等单位分别完成了4个茶树品种(舒茶早、碧云、野生种DASZ及龙井43)染色体级别的参考基因组的组装[2-5]。茶树重要性状(如抗逆、品质代谢、生长发育等)的调控机理解析及基因挖掘取得较大进展。如茶树叶色变异是一个可以利用的性状,对多个白化、黄化及紫化的品种进行了多组学的分析,发现白化和黄化表型的形成多与叶绿体发育受阻和叶绿素合成受到抑制有关,其相关的基因表达较绿色叶片变化明显下调,而紫化茶树品种的表型则与花青素含量累计有关,在分子机制上,花青素合成途径的功能基因及调控基因表达上调[6-8]。

借助于大批量转录组数据和基因组数据的释放,与品质、抗逆、生长发育等形状有关的功能基因及调控基因被批量克隆,且通过异源转化或体外表达的方式进行了功能的简介鉴定,为深入解析茶树重要形状形成调控机制奠定了基础。

(3)育种技术创新

茶树传统自交育种采用的均为人工授粉,需要准备花粉、授粉、套袋以及后期摘袋等工序,过程中会对茶树的花朵形成多重损伤,可能会导致花朵脱落,影响结实率[9]。“十三五”期间开始探索和研究新的育种技术。如中国农业科学院茶叶研究所利用神舟11号搭载茶树种子返回后,获得了航天茶苗。Wang[10]等利用GWAS技术,发掘出26个与春茶发芽期关联的SNP等位变异和候选基因,并从中开发出1个dCAPS标记,可用于分子标记辅助育种。

2、茶树品种选育进展

2015年11月,第十二届全国人民代表大会常务委员会通过了修订的《中华人民共和国种子法》。新版《种子法》规定:除主要农作物和主要林木实行品种审定制度外,对部分非主要农作物实行品种等级制度。列入非主要农作物等级目录的品种在推广前应当等级。茶树被列入第一批非主要农作物等级目录。自从新的《种子法》实施以来,2018年第一批9个茶树品种通过了非主要农作物品种登记,2019年有39个品种通过登记,2020年有42个品种通过登记。“十三五”期间,共有90个品种通过登记(表1)[11]。

表1 “十三五”期间通过登记的茶树品种

(王新超等,2021)

二、种植与栽培技术

“十三五”期间在国家重点研发计划项目“茶园化肥农药减施增效技术集成研究与示范”、国家茶叶产业体系和地方政府的大力支持推动下,我国茶叶科技在茶叶种植领域取得了阶段性的进展。优化和改进了无害化除草技术和生态茶园技术,集成提出了茶园病虫害绿色防控技术模式,构建了茶园化肥减施增效的理论、方法和技术体系,茶园环境信息感知技术和装备取得了阶段性的成果。

1、生态保护

茶园生态环境的研究和构建对提高茶叶的品质和产量、提高劳动效率和经济效益具有重要意义。“十三五”期间,基于茶树的生长发育规律,对茶树的生长环境进行调节控制展开研究,取得了阶段性的进展。有研究表明土壤微生物活动对茶园土壤的理化性状、物质循环和激素合成等起着重要作用,土壤微生物间的拮抗作用和茶树根际中微生物菌株耐胁迫等能力都会影响茶树的生长和茶园的病虫害防治[12,13]。有关研究针对茶园独特的土壤生态系统,提出了利用微生物的生态功能,构建“茶-草-菌”的立体栽培技术模式的生态茶园,提高土壤有机质和改善微生物群落,进而促进茶树的生长发育和病虫害防治[14]。茶园施肥对土壤微生物群落特征具有重要的影响,有研究揭示不同施肥模式下土壤中微生物的数量具有明显的差异[15],茶园土壤微生物的多样性随有机肥替代比例的升高而增加[16],随化学氮肥施用量的增加而降低[17]。

在茶园土壤氮元素循环的微生物机制方面科研人员进行了研究。研究发现氮肥施用量增加引起自养硝化和异养硝化作用进一步促进N2O的排放,嗜酸反硝化细菌和对酸性耐受性较强的真菌在高酸性茶园土壤N2O排放中起重要作用[18]。研究发现真菌在茶园土壤氮素矿化过程中起到了重要作用,对土壤净硝化作用和净氮矿化作用的贡献大于细菌[19]。

2、绿色防控

茶园有害生物绿色防控技术是提升茶叶品质和质量、维持我国茶产业健康可持续发展的重要技术支撑。随着科技的发展,“十三五”期间茶园有害生物的绿色防控技术水平提高。

(1)绿色防草技术研究进展

茶园中的杂草是茶园生态环境的重要组成部分,杂草与茶树互相之间对养分和水分的争夺不利于茶树的生长,降低茶叶的产量和品质。传统的人工除草技术存在耗时耗工且防效差的问题。“十三五”期间,我国科技工作者对我国茶园杂草的信息进行了修订和整理,提出了多种免人工除草技术。齐蒙等[20]为确定中国查去已经报道的茶园杂草有效名录,利用清单法整理1959-2018年中国茶区茶园杂草文献中茶园杂草名录信息,结果表明截至2018年中国茶区报道的茶园杂草有效名录为241条,分属57科66属。通过与中国农田恶性杂草名录和中国外来入侵植物名录进行对比,发现有12种杂草属于恶性杂草[21]。茶园杂草信息的修订整理为杂草防控奠定了基础。为免除人工除草,研究表明采用生态抑草是茶园防治杂草的有效方式。在茶园中套种绿豆茎蔓、茶园行间种植白三叶草和间作鼠茅草能够有效抑制杂草的生长、调节土壤温湿度和结构、改善土壤肥力显著提高茶叶中的氨基酸、咖啡碱、茶多酚和水浸出物含量提高茶树的发芽密度和百芽重[22-24]。研究提出了防草布覆盖除草技术,研究表明在夏季覆盖防草布对茶园行间杂草的防治效果可达100%,同时覆盖防草布可以降低夏季茶园不同深度的土壤温度,改善土壤水分促进茶树的生长[25]。

(2)绿色病虫害防控技术研究进展

我国茶园病虫害种类繁多,常见的茶树病害有茶白星病、茶轮斑病、茶赤星病、茶饼病、茶炭疽病等,常见的茶树虫害有茶小绿叶蝉、茶尺蠖、灰茶尺蠖、茶橙瘿螨等。随着科技水平的提高,对茶树病害的病原鉴定取得了阶段性的进展。茶白星病是高海拔茶区高频发生的茶树病害,茶白星病最早于1887年在日本静冈县被发现,但直到1920年首次鉴定茶白星病病原菌为叶点霉属的Phyllosticta sp[26], 而后巴西、巴干达等均鉴定其病原菌为E.leucospila[27]。随着分子技术的发展和菌类信息的完善,Phyllosticta sp于2018年在我国被提出为Phoma sp. [28],因此茶白星病的病原菌出现了Phyllosticta sp,E.leucospila,Phoma sp.三种不同的说法,经过科研人员的进一步研究,对分离得到的病原菌形态观察、分子序列比对和致病力测试发现E.leucospila为茶白星病病原菌,而Phyllosticta sp为一种感染患病植物组织的重寄生真菌[29]。茶树炭疽病属是茶树叶部病害的一种,但国内外对茶炭疽病原菌归属一直存在争议。目前研究表明炭疽菌属Colletotrichum真菌、果生炭疽菌、胶孢炭疽菌等均可以引起茶炭疽病、茶云纹叶枯病[30,31]。

“十三五”期间对茶尺蠖和灰茶尺蠖展开了研究,研究发现灰茶尺蠖和茶尺蠖两近缘种之间存在着不对称的交配作用,其混合群体后的发生量会明显减少,其中灰茶尺蠖对茶尺蠖的生殖干扰作用更为明显[32]。有关研究基于COI基因酶切位点差异,建立了“PCR-RELP”快速鉴定方法,根据该方法初步明确了茶尺蠖和灰茶尺蠖的地理分布[33]。针对我国茶园的主要害虫茶尺蠖、灰茶尺蠖、茶小绿叶蝉等,在化学生态防控技术、物理防控技术和害虫生物防治技术方面取得了众多研究成果。随着分析技术的进步,成功鉴定出了茶尺蠖和灰茶尺蠖的性信息素成分,为高效性诱剂的研制奠定了基础[34]。茶尺蠖性信息素的正确鉴定,研制出了高效性诱剂,并对配合性诱剂使用的缓释载体、诱捕器和放置密度进行了进一步的优化,建立了灰茶尺蠖性诱杀防治技术[35]。提出了茶毛虫、茶蚕、斜纹茶蛾、茶细蛾等害虫的高效性诱剂产品[36]。通过研究茶园主要害虫和天敌的趋光特性差异,研发出了天敌友好型LED杀虫灯,该杀虫灯提高对小型害虫的诱杀效果同时显著降低了天敌昆虫的诱杀量[37]。成功研发出了可生物降解的红黄双色诱虫板,红色用于驱赶天敌昆虫,黄色用于引诱茶小绿叶蝉,实现了茶小绿叶蝉的高效精准诱杀[38,39]。依据茶园病虫害出现的类型,通过以螨治螨的方式在茶园中释放食螨胡瓜钝绥螨防治茶橙瘿螨、茶跗线螨等茶园害螨,防治效果可达到80%。对高效毒株进行筛选,提高对灰茶尺蠖致死率的同时缩短了致死时间[40]。近年来,从斜纹夜蛾罹病死亡的幼虫尸体分离出一种新型细菌杀虫剂,对多种鳞翅目害虫具有较好的防治效果,已成为茶园鳞翅目害虫无害化防治的有效手段[36]。研究结果表明,间作黄豆、玉米可以降低茶树茶饼病和茶炭疽病的患病率[41]。研究集成和示范推广了茶园病虫害绿色防控技术模式,实现化学农药平均减施70%以上,极大地提高了我国茶园害虫绿色防控技术水平。

3、科学施肥

茶树是叶用经济作物,茶园的合理施肥对提高茶叶质量和品质至关重要。“十三五”期间,国家开展了茶园化肥减施增效的专项研究,取得了重要的进展。针对我国茶园施肥存在过量施肥、茶树专用肥占比少、有机养分替代率低和表面撒施等问题,研究从精准养分用量、有机肥替代化肥、调整肥料结构、改进施肥方法和配套土壤改良等5个方面总结提出了茶园养分综合管理技术策略[42]。研究表明茶园有机肥种类和使用比例对茶园的产量、品质以及茶园突然具有影响,田间实验结果表现出在茶园有机肥替代化肥的比例在30%时茶叶的氨基酸含量更高[43]。研究揭示了茶树品质成分代谢对氮素用量的响应,氮素用量过多对黄酮醇糖苷的合成具有抑制作用[44]。田间试验表明,在1月中旬至2月份茶树根系生长停止和地上部深度休眠的情况下,茶树根系依然具有较强的氮素吸收,吸收氮素储存于茶树的根系、枝条和成熟叶中,为春季茶树新稍生长重新分配和利用[45]。研究揭示了不同减氮模式对茶园土壤细菌群落结构的影响,适当减氮处理有利于增加茶园土壤中细菌菌落的多样性,有利于茶园养分的高效利用[46]。研究了施肥了富硒茶园硒含量、养分和品质的影响,回归分析表明春季磷肥施用量对春茶有机硒含量有显著影响,春、夏季氮肥施用量对夏茶有机硒含量有显著影响[47]。提出了滴灌施肥水肥一体化技术参数和叶面施肥技术,茶树养分吸收量明显增加,养分淋溶损失显著减少。近年来各地提出了多项化肥减施增效技术模式,在实际生产中发挥了十分重要的作用。研究表明控释肥和有机替代两种化肥减施增效技术模式在广东单丛茶区上有较好的应用前景[48]。研究提出了6套化肥减施增效技术模式与平均施肥模式(或当地习惯施肥模式)相比,茶园化肥减量23%~88%,增产3.3%~19.5%,新梢养分利用率明显增加,同时每公顷节本增效1.17万~2.25万元[49]。

4、物联网技术

茶树生长状况和茶园环境的快速感知、智能决策和精准实施是实现茶园智能管理的重要前提。“十三五”期间,茶园智能化装备技术取得了阶段性的成果。在获取茶树生长状况感知技术方面取得了较大的进展,研究建立了基于可见近红外高光谱成像技术结合多元统计分析无损监测茶叶中的氮肥水平、磷和钾含量的方法[50,51],探明了使用高光谱成像技术结合深度学习监测茶叶中的叶绿素的可行性[52]。利用近红外光谱结合化学计量学开发了一种有效的茶园土壤分析技术,对茶园土壤中的有机物和总氮含量进行评估,并对茶园土壤肥力进行判别,研究结果有助于物联网传感器在高产优质茶园建设中的发展[53]。针对茶园害虫识别依靠人工效率低的局限性,提出了采用计算机视觉技术实现茶园害虫的智能识别[54]。基于物联网、多媒体、计算机图像识别、GIS等技术构建了茶树病虫害监测预警系统,结合自动虫情灯、自动性诱仪、孢子不着仪、智能气象仪、高清摄像机等物联网硬件设备,实现了茶园生产环境监测、虫情监测、病虫害预警等功能,该监测预警系统在英德市试点茶园进行了应用,有效的提高了茶园病虫害防治工作效率,促进了英德市茶叶产业的经济效益增长和可持续发展[55]。利用数码相机和手机结合深度学习识别茶树嫩芽的采摘位点,为机械智能化鲜叶采摘奠定了基础。提出并构建了一套高标准现代化茶园物联网系统,整个系统包括茶树生长环境监测平台、视频监测平台、水肥一体化调控平台、茶叶质量追溯平台和茶树生长过程综合管理平台,试验结果表明,该系统的应用能够有效提高茶园的管理效率,具有一定的推广性[56]。目前茶树生长状况和生长环境的智能化感知监测准备和技术还处于研发阶段,应用于茶园还处于试验阶段,需要进一步进行优化和改进才能转化为产业化。

三、加工工艺/制茶技术

1、传统加工工艺与现代技术的融合

(1)绿茶加工技术研究

“十三五”期间,杀青和干燥是绿茶加工技术研究的重点。研究表明,不同联合杀青方式对绿茶感官品质影响显著。滚筒联合远红外可有效提高栗香品质,其中以滚筒-远红外-微波联合杀青处理最优[57]。开发了电磁滚筒变温-热风耦合干燥技术,这一技术具有精准控温、分段变温的操作特性,且有利于绿茶栗香的形成[58-59]。将茯砖茶发花的冠突散囊菌用于秋季绿茶,发现绿茶花香增加涩味减少,品质得到了提升[60]。

(2)红茶加工技术研究

“十三五”期间,补光萎凋、动态发酵等一系列工夫红茶加工新技术开发成功,初步实现了高品质工夫红茶或特色工夫红茶的定向化加工。Chen等人研究发现,富氧发酵显著提高了红茶的品质,在滋味上苦涩味降低,鲜味增加[61]。Hou等人将动态萎凋应用于祁门工夫红茶,发现动态萎凋有利于花香和果香味的积累,并且茶汤鲜味增加[62]。

安徽农业大学研发了一款微型近红外仪,用于检测红茶萎凋与发酵程度,并得到了较好的试验成果。Jin等人研究表明,使用微型近红外对红茶发酵程度进行判别,判别率为75.67%;自行搭载廉价的成像系统对红茶发酵程度进行评价,判别准确率为81.08%[63]。

(3)白茶加工技术研究

白茶的萎凋是“十三五”期间研究的重点。设施萎凋技术研究不断深入,实现了白茶萎凋环境温度、相对湿度、光质光强等的精准调控,探明了红光萎凋技术可以降低白茶苦涩味、提高鲜爽度[64]。温度25-30℃、相对湿度65-75%条件下萎凋35-40h,鲜叶失水速度和失水程度适宜,有利于获得品质优异的白茶[65]。

(4)乌龙茶加工技术研究

“十三五”期间对乌龙茶的加工标准进行了统一,制定并发行了国家标准乌龙茶加工技术规范(GB/T 35863—2018),对生产企业的标准化起到了规范作用。其中还分别制定了台式乌龙茶(GB/T 39562-2020)、水仙(GB/T 30357.4-2015)等乌龙茶的加工标准。做青是乌龙茶加工技术研究的重点。实现了智能化检测做青时的温度、湿度和青叶减重率,为之后自动化做青提供了理论依据[66-67]。

(5)黑茶加工技术研究

“十三五”期间,渥堆是黑茶加工技术研究的重点。青砖茶渥堆工艺的最优条件:潮水量30%、渥堆温度55℃、时间25天、相对湿度95%。在此条件下制成的青砖茶陈香明显,滋味陈醇、有回甘[68]。湖南农业大学研发了黑茶诱导调控发花、散茶发花、砖面发花及品质快速醇化等加工新技术,大力提升了黑茶产业的加工技术水平。他们通过分离纯化茯砖发花过程的优良菌种并加以培养,在茯砖渥堆前加入发花诱导剂(菌种)实现了诱导调控发花。诱导调控发花技术参数为:茶坯含水量25%,发花温度28-30℃,环境湿度70-75%,发花周期缩短3-5d。采用该技术生产的茶砖内“金花”均匀茂密,加工成本降低30%以上,综合效益提高50%以上[69]。

(6)黄茶加工技术研究

闷黄是黄茶加工技术研究的重点。研究发现,在黄茶闷黄阶段通入氧气不仅可以缩短闷黄时间,提高生产效率,而且有助于可溶性糖的积累,使黄茶形成甜醇的口感[70]。并且研究明确了黄茶闷黄的条件:叶温(45±2)℃、叶片含水率(37±3)%、环境相对湿度(80±5)%。以此参数进行闷黄处理,黄茶的风格特征明显,内质滋味甘润、醇厚[71]。在黄大茶的加工过程中,焙火工艺是研究的重点。研究表明,老火(145-155℃)处理下的黄大茶挥发性品质较优,有利于黄大茶稳定、和谐焦香风味的呈现及特征锅巴香的形成[72]。Wei等人对霍山黄芽闷黄工艺进行了研究,发现两次闷黄有利于保证黄茶的质量。经过两次闷黄处理后的霍山黄芽干茶和茶汤明显黄变,苦涩感较未闷黄的茶样明显降低且甜感增加[73]。

2、茶叶加工机械装备性能提升

(1)连续化加工技术进一步熟化并应用

“十三五”期间,扁形、针形绿茶的加工工艺和装备得到了进一步升级,研发出珠形、条形绿茶的成套标准化加工技术,并在产业上示范应用。胡欣[74]等人在单机化试验的基础上,利用我国自行设计的颗粒形绿茶连续化生产线,探明了最优工艺组合参数,并将该结果应用于最近研建的颗粒形绿茶连续化生产线。安吉白茶连续化加工生产线,有效解决了生产洪峰期鲜叶大量采摘时不能及时加工造成鲜叶红变的问题,同时克服了单机作业中操作工人的人为不可控因素。确保茶叶加工过程的安全性、茶叶品质的规格一致和稳定性[75]。

松阳碧云天茶业有限公司引进了工夫红茶全程连续自动化生产线机组,该生产线主要由鲜叶处理、二次萎凋和揉捻做形、连续发酵(带温湿自控)、动态初烘(品质调控)、足烘提香等五个模块组成。试验表明,此生产线具有节能明显、温控精确、操作简便、自动化程度高等特点,符合工夫红茶加工的清洁化、标准化、连续化、规模化生产要求[76]。

在安化毛茶加工领域,长沙湘丰智能股份有限公司有针对性地研发了集摊青、杀青、揉捻、渥堆、烘干等为一体的黑毛茶自动化生产线。益阳胜希机械设备制造有限公司研发的黑茶自动压制生产线,实现了黑茶压制定型及自动输送。这条自动压制生产线研发成功后,经过多次改进优化,自动化程度大大提高,操作提高、产能大,一条生产线可产多种规格的茶砖。生产的紧压黑茶外观正频率、生产效率大大提高,成品茶砖外观精致。

(2)数字化、智能化加工技术及装备得到研发

加工装备是保障茶叶生产质量的关键,性能优异的装备可以提升生产效率,优化产品品质,实现加工作业高效、省力、标准。安徽农业大学开发出茶鲜叶原料质量分析仪、近红外光谱无损检测装备等,可进行鲜叶质量登记、茶叶色香味形品质的综合评判,推动了茶叶数字化品控和装备的提升。赵进等人设计了茶叶揉捻机组和实现4台茶叶揉捻机协调工作的自动控制系统给,该机实现了茶叶揉捻过程中喂料、揉捻、卸料的全部自动化环节,并实现了数字化、可视化的控制过程。通过试验,系统实现了茶叶生产量220kg/h,成条率稳定在83%以上,提高了茶叶生产效率和生产质量,节约了人力资源[77]。

安徽农业大学Wang等人联合嗅觉可视化、计算机视觉技术和微型近红外仪用于监测红茶萎凋的程度。研究结果表明,单一感知技术难以实现红茶萎凋程度的准确评判;基于中层数据融合所建的SVM模型取得了最优的评判结果,对预测集样本中三个萎凋程度的判别率达到100.00%、92.86%和100%[78]。

安化黑茶加工方面研发应用了黑茶高效节能型汽蒸与渥堆发酵新装备、涡轮推进发酵机、智能固态发酵机、节能高效蒸茶装置、茯砖茶循环双向蒸茶机等专利产品,这些设备的应用使蒸汽利用率提高35%以上,渥堆发酵均匀度得到显著提高。普洱茶发酵发面,研发出控温、控湿、控微生物的发酵装备,如发明双层保湿转动式普洱茶发酵罐、普洱茶清洁化发酵车间、普洱茶发酵无线控制系统等,这些创新发酵装备使得普洱茶发酵做到了可控化、清洁化、数字化。广西六堡茶发酵工艺中,研发出发酵罐和全自动智能茶叶发酵装置。四川黑茶加工中开发出卧式发酵机、滚筒发酵机等先进的发酵装置。华中农业大学研发出黑茶(青砖茶)数字化自动渥堆发酵技术,通过模拟自然渥堆,实现自动加湿与补湿、温湿度自动检测与控制、自动翻堆与解块,使青砖茶品质得到提升。

四、深加工技术与产品

茶叶深加工是实现茶资源高效利用的主要途径,是提升茶叶附加值、跨界拓展茶的应用领域、延伸茶叶产业链的重要途经和推动我国茶产业高质量发展的重要支撑。“十三五”期间,“食品添加剂与配料绿色制造关键技术研究级开发”“现代茶制品加工与贮藏品质控制关键技术及装备研发”“茶叶产品质量安全控制技术及健康功能评价应用示范”等国家重点研发计划陆续实施,茶叶深加工技术创新进入攻坚期。同时随着科技水平的不断提高,茶制品产业链结构和产品供应链体系趋于稳定。

1、茶叶功能成分提制技术进展

“十三五”期间,茶叶中茶多酚、儿茶素、茶黄素、茶多糖、茶皂素等功能性成分的提制技术和产品质量取得了突破性的进展。茶叶功能成分提制技术由单一追求产品目标,逐步转变为全面考虑绿色性能、节能降耗、生产效率和生态环境效益等综合指标上来[79]。实现了茶叶儿茶素混合物的工业化分离纯化,创建了制备高纯儿茶素(儿茶素总量≥90%,咖啡碱≤0.5%)的成熟工艺,只采用水和食用酒精作为溶剂高效分离纯化儿茶素组分并绿色安全脱除咖啡碱,解决了儿茶素传统提制工艺中乙酸乙酯、二氯甲烷和三氯甲烷等溶剂残留的问题,提高了儿茶素制品的质量安全性[80]。通过综合采用酶工程技术与柱色谱在线检测技术,突破了儿茶素单体高效分离制备技术瓶颈,儿茶素单体的制备水平实现了工业化和规模化,该成果对促进我国深加工领域学术应用创新研究,增强产业竞争具有明显的战略意义[81]。茶黄素是红茶中的“黄金分子”,直接从红茶中分离纯化制备茶黄素成本昂贵,难以实现产业化。“十三五”期间,通过儿茶素酶促氧化制备茶黄素的技术水平逐渐成熟,彻底扭转了以红茶为原料提制茶黄素成本高的局面[82]。茶多糖是茶叶中重要的活性成分之一。茶多糖最常见的制备方法是水提醇沉法,以及各种辅助提取方法,如微波、超声波、酶辅助浸提、超临界流体萃取等,常见的纯化技术有先用Sevag法除蛋白、双氧水法脱色、透析法除盐等,然后用柱层析法、超滤法、季铵盐沉淀法等提纯[79]。近年来,纯化水初级浸泡、隔水提取、高能微波预处理和磨球机械辅助提取等多种提取工艺相结合,显著提高了茶多糖的提取效率[83-86]。茶皂素是一种性能优良的非离子型天然表面活性剂。茶皂素的传统提制工艺有水提法和有机溶剂提取法[79]。近年来,重结晶法、萃取法、生物纯化法、沉淀法、吸附分离法的应用,使得茶皂素的分离纯度和分离效率及产品质量的安全性大大提高[80]。

2、速溶茶加工进展

目前我国速溶茶年产量超过2万吨,主要销往日本、美国及欧洲国家和地区,且产值达15亿元,已跃然成为速溶茶第一大生产国[87]。传统速溶茶产品主要有速溶红茶、绿茶、乌龙茶、茉莉花茶等。随着新型技术的发展,高香热溶速溶茶、冷溶原味速溶茶、高香冷溶速溶茶等高品质速溶茶产品陆续被研发,极大程度的满足了市场高端化、个性化的需求。“十三五”期间,以动态逆流提取和冷冻干燥等技术为核心的速溶茶加工技术创新,进一步推动了速溶茶产业的发展。“十三五”期间,速溶茶加工技术的迭代更新促进了我国速溶茶产业的稳步发展。新型的提取、分离、浓缩和干燥技术及装备的研发应用极大程度的推动了新型的特色速溶茶产品的发展。

(1)新型提取技术

提取工艺技术与装备是决定速溶茶得率和品质的重要工序。超声、微波辅助提取与逆流动态提取技术相结合的方式可以实现相对低温条件下茶叶有效成分的高效、快速提取,同时确保了提取效率及品质,是茶叶提取物工业化生产的主要浸提方式[88]。高压脉冲电场(PEF)提取技术对速溶茶的香气起到了很好的改善作用,适合与冷冻浓缩、真空冷冻干燥等技术联合使用[89]。此外,酶解提取、超临界 CO2提取等新技术也得到了不断的研究与应用。

(2)新型浓缩技术

相比于传统的蒸发浓缩和冷冻浓缩技术,新型的膜浓缩技术运行温度更低,不仅能有效的保护热敏性物质,保留茶叶原本的香气物质,提高速溶绿茶的感官品质,同时能抑制重金属、农药残留、无机盐等的富集。新型的膜浓缩技术主要包括反渗透浓缩、超滤浓缩和纳滤浓缩[80]。机械式蒸汽再压缩技术(Mechanical vapor recompression, MVR)因能耗低、效率高而被广泛应用于真空浓缩设备中。目前,MVR真空浓缩技术常以膜浓缩技术相结合的方式应用于大规模的速溶茶生产过程中。

(3)干燥技术

目前,喷雾干燥和真空冷冻干燥是速溶茶加工生产中主要的干燥方法。随着技术的发展,真空低温连续干燥、微波真空干燥以及高压电场干燥等新型干燥技术被提出,但在产业化生产过程中的应用不多。连续真空冷冻干燥方法和低温喷雾干燥等新技术的研发为提高速溶茶的风味品质奠定了良好基础。在传统喷雾干燥的基础上,低温喷雾干燥技术具备提高速溶茶产品色泽及冷溶性品质的优势。

(4)生物酶技术

生物酶是速溶茶生产过程中主要的添加物,能明显改善速溶茶的感官品质。研究表明,蛋白酶[90]、单宁酶、β- 葡萄糖苷酶[91]、茶茎粗酶(ETS)、马铃薯葡萄糖粗酶(EPD)[92]、果胶酶、纤维素酶[93]、和黑曲霉[94]等可以显著提高速溶茶产品的滋味和香气品质。生物酶技术的应用,有助于速溶茶产品的花果香和青草香提高,降低苦涩感 [95]。

(5)提香保香技术

为适应市场对速溶茶高质化、终端化技术的需求。“十三五”期间,中国农业科学院茶叶研究所等国内相关单位相继开展了速溶茶保香、提香技术的研究。微胶囊技术是指利用聚合物薄膜包裹微量物质,是一种储存固体、液体、气体的微型包装技术。该技术能很好的保护速溶茶香气,其中保香增香效果较好的主要是β-环糊精(β-CD),且β-CD 的安全无毒性已被证实,在茶饮料的增香保香中应用较为成功[89]。此外,香气回填技术的研究也为高品质速溶茶的生产制备奠定良好基础。天然香气回收和香气回填技术,是指利用冷凝方法将茶汤中挥发出的香气物质进行收集,再将含香冷凝水添加到茶汤浓缩液中的技术。该技术已成功应用于铁观音速溶茶的加工生产中,制得香高馥郁、具有“音韵”的铁观音速溶茶粉[96]。

3、茶饮料加工进展

目前,我国茶饮料年产量超1500万吨,是国际第一大茶饮料生产国[87]。“十三五”期间,茶饮料加工在滋味品质的调控、茶饮料沉淀控制以及饮料专用化加工技术等方面的提升促进了我国茶饮料的发展。此外,以茶叶及制品为主要原料,以鲜奶或奶制品、水果、糖、谷物、酒及香料等为辅料,经现场提取和调配制成的新式茶饮满足了年轻一代消费者的需求,其产业得到迅速发展。

(1)茶饮料滋味品质调控技术

滋味是影响茶饮料品质的关键因子之一,其调控技术的研究具有重大意义。“十三五”期间,针对夏秋茶苦涩味重、滋味品质差造成了资源利用率低的难点问题,相关研究取得突破性进展。为充分利用夏秋茶资源,研究者对绿茶茶汤中苦涩味和回甘滋味的关键成分的呈味规律进行深入探索。研究发现,绿茶中呈苦涩味的酯型儿茶素与呈甜味的非酯型儿茶素之间,通过生物酶解进行转化调控[97]。因此,生产中利用复合酶水解,并在酯型/非酯型儿茶素比例协同体系pH 的在线监测下,可实现茶汁滋味的定向精准调控。

(2)茶饮料沉淀控制技术

茶饮料生产及贮藏过程中形成的沉淀极大程度上影响了产品的外观及风味品质。“十三五”以来,研究者在茶饮料生产过程中基于络合作用的沉淀物形成机理取得大重大突破。研究表明绿茶沉淀物乳酪的生成与茶多酚和碳水化合物的初始浓度有关,而红茶乳酪的生成量由蛋白质、甲基黄嘌呤和茶红素浓度决定[98]。儿茶素因与蛋白质、咖啡碱和金属离子存在分子相互作用,对乳酪的形成起着关键作用。牛血清蛋白(Bovine serum albumin,BSA)的引入,使得具备更强相互作用的酯型儿茶素-牛血清蛋白的复合体打破了氢键,可有效减少乳酪的形成[99]。

茶饮料沉淀生物控制技术的研究为提高茶饮料品质及货架期打下坚实基础。相比于传统的膜过滤法、吸附法、包埋法及转溶法等,生物酶解法可以极大程度上减少对茶饮料风味品质的影响。单宁酶被广泛用于控制茶乳酪形成和沉淀,经单宁酶处理的茶叶提取物与蛋白结合的能力降低,使得茶乳酪的形成受到抑制[100]。单宁酶与纤维素酶、蛋白酶和脯氨酸核酸内切酶结合可有效分解茶乳酪,同时能水解形成乳酪的关键物质如茶多酚和蛋白质,对茶汤的澄清效果增强。

(3)饮料专用茶加工技术

鉴于传统加工制成的原料茶难以满足茶饮料加工的需求,早在2000年,我国对饮料专用茶展开相关研究。“十三五”期间,饮料专用茶加工技术研究与应用取得了新的进展,制定了饮料专用茶叶成套加工技术,开发出了一批高质化、特色化饮料专用茶叶,饮料用原料茶开始走向专用化。研究发现,烘焙处理可提高蒸青绿茶饮料风味的稳定性,且热处理几乎不影响焙茶制得茶饮的滋味品质[101]。为解决茶饮料专用原料茶的筛选问题,研究提出基于茶汤色度指标的快速初筛方法,显著提高了茶饮料用原料茶的筛选效率。针对茶饮料原料茶来源广、品质不均匀的问题,集成茶叶热转化提质技术和基于“线性规划模式”的茶叶定量拼配技术,联用分筛、风选、静电、磁选等净选去杂技术和微波杀菌技术,创制出饮料专用茶叶成套加工技术,产品品质、安全性、稳定性显著提高。

(4)新式茶饮的发展

随着茶饮消费群体的年轻化,茶饮料开发呈多元化、差异化、特色化发展的趋势。“十三五”期间,以粉末为原料的冲调模式逐渐被市场所淘汰,线下直饮式的奶茶饮品市场规模迅速扩大。自2010年以来,一种有别于传统茶叶和瓶装即饮茶的新式茶饮产品逐渐步入茶业消费市场。这些新式茶饮产品突破了传统茶饮制作和消费边界,以材质天然、设计时尚、现场制作和即饮方便等特点,满足了年轻一代消费者的需求,其产业得到快速发展。据统计,截至2020年底我国新式茶饮市场规模突破千亿元大关,成为继传统杯泡热饮、工业化瓶装即饮茶之后的第三大茶叶消费方式[102]。

新式茶饮是指以茶叶及制品为主要原料,以鲜奶或奶制品、水果、糖、谷物、酒及香料等为辅料,经现场提取和调配制成的茶饮。其主要包括奶茶、水果茶、纯茶、抹茶、混合茶等系列茶饮品。为满足年轻一代消费群体的需求,新式茶饮类型居多、设计时尚,且其发展与迭代速度较快。新式茶饮的发展不仅满足了新时代茶叶消费市场的个性化需求,同时也为培养新一代的饮茶群体提供良好方案。

4、茶食品加工进展

茶食品是一类利用超微茶粉、抹茶、茶汁或茶叶提取物等原料,配以其他可食材料加工而成的食品。随着经济社会发展,茶食品因其健康、天然、绿色等特性在我国快速发展,成为茶叶深加工利用的一个重要发展方向。“十三五”期间,超微茶粉在食品上应用的技术突破以及各类新产品的开发,推动了茶食品行业的持续发展。超微茶粉(抹茶)外形细腻、粒径较小且分布均匀、色泽翠绿,作为配料已逐渐代替速溶茶粉或茶水提物,广泛应用于食品、化妆品和医疗行业。超微茶粉(抹茶)的分散性[103]、流动性和稳定性差是影响其在食品中广泛应用的主要难题。针对抹茶等超微茶粉在应用时易发生粘附及团聚现象,通过喷雾流化床造粒机在茶粉表面喷涂亲水性聚合物,对茶粉表面进行改性,可提高抹茶粉的流动性和水分散性。羧甲基纤维素钠、海藻酸钠、黄原胶等食品添加剂,可降低超微茶粉的沉降比,提高茶粉分散稳定性[104]。研究表明通过结构修饰可以提高茶粉的稳定性及利用效率,如采用β-环糊精包埋超微绿茶粉,能够提高茶粉有效成分的溶解度、溶出率、稳定性和生物利用率[105]。研究发现,可利用含锌或含铜化合物置换叶绿素中镁离子,结合烫漂技术,添加酵母微量元素,获得色泽热稳定性高的抹茶粉[106]。我国茶食品种类众多,工艺制作方法各异导致风味特征呈现显著差异。茶食品研发需要对产品配方和制作工艺进行筛选与优化,提高产品的感官风味品质。茶的添加形式、添加量以及茶的类别对茶食品的品质具有重要的影响。茶食品由国外主流食品向传统食品转变,茶月饼、茶面条、茶豆腐等具有中国特色的食品开始进入人们的视野。“十三五”期间,茶食品的品质分析技术从以传统的感官审评为主体的主观评判方式逐渐发展为以质构分析、图像分析和颜色分析等多传感结合的客观评价方式。建立了更系统客观的定性和定量相结合的评价体系,促进茶食品产业的可持续健康发展。

参考文献:

[1] 马建强,姚明哲,陈亮.茶树种质资源研究进展[J].茶叶科学,2015,35(01):11-16.

[2] XIA E H, TONG W, HOU Y, et al. The reference genome of tea plant and resequencing of 81 diverse accessions Provide insights into its genome evolution and adaptation[J]. Molecular Plant, 2020, 13(7): 1013-1026.

[3] ZHANG Q J, LI W, LI K, et al. The chromosome-level reference genome of tea tree unveils recent bursts of non-autonomous LTR retrotransposons in driving genome size evolution[J]. Molecular Plant, 2020, 13(7): 935-938.

[4] ZHANG W Y, ZHANG Y J, QIU H J, et al. Genome assembly of wild tea tree DASZ reveals pedigree and selection history of tea varieties[J]. Nature Communications, 2020, 11(1):693-704.

[5] WANG X C, FENG H, CHANG Y X, et al. Population sequencing enhances understanding of tea plant evolution[J/OL]. Nature Communications, 2020, 11(1): 4447.

[6] Zhang C , Wang M , Gao X , et al. Multi-omics research in albino tea plants: Past, present, and future[J]. Scientia Horticulturae, 2020, 261:108943.

[7] Lai Y S , Li S , Tang Q , et al. The Dark-Purple Tea Cultivar 'Ziyan' Accumulates a Large Amount of Delphinidin-Related Anthocyanins[J]. Journal of Agricultural and Food Chemistry, 2016, 64(13):2719-2726.

[8] 田月月. 黄金芽茶树叶色响应光质的生理特性及机制研究[D].山东农业大学,2020.

[9] 王新超,王璐,郝心愿,曾建明,杨亚军.中国茶树遗传育种40年[J].中国茶叶,2019,41(05):1-6.

[10]WANG R J, GAO X F, YANG J, et al. Genome-wide association study to identify favorable snp allelic variations and candidate genes that control the timing of spring bud flush of tea (Camellia sinensis) using SLAF-seq[J]. Journal of Agricultural and Food Chemistry, 2019, 67(37): 10380-10391.

[11]王新超,王璐,郝心愿,李娜娜,丁长庆,黄建燕,曾建明,杨亚军.茶树遗传育种研究“十三五”进展及“十四五”发展方向[J].中国茶叶,2021,43(09):50-57.

[12]THAKUR R, SHARMA K C, Gulati A. et al. Stress-Tolerant Viridibacillus arenosi Strain IHB B 7171 from Tea Rhizosphere as a Potential Broad-Spectrum Microbial Inoculant [J]. Indian Journal of Microbiology,2017,57(02):195–200.

[13]Purkayastha G D, Mangar P, Saha A, et al. Evaluation of the biocontrol efficacy of a Serratia marcescens strain indigenous to tea rhizosphere for the management of root rot disease in tea [J]. Plos One,2018,13(02):e0191761.

[14]黄小云,黄秀声,韩海东.茶园土壤微生物群落结构研究进展与“茶-草-菌”技术应用展望[J].茶叶学报,2021,62(02):94-99.

[15]王炫清.不同施肥模式对茶园土壤微生物区系及茶叶品质的影响[D].南京农业大学,2016.

[16]Ji L F, Ni K, Wu Z D, et al. Effect of organic substitution rates on soil quality and fungal community composition in a tea plantation with long-term fertilization [J]. Biology and Fertility of Soils,2020,56(05):633–646.

[17]Ma L F, Yang X D, Shi Y Z, et al. Response of tea yield, quality and soil bacterial characteristics to long-term nitrogen fertilization in an eleven-year field experiment [J]. Applied Soil Ecology, 2021, 166:103976.

[18]方雅各,苏有健,廖万有,等.茶园土壤N_2O排放的影响因素及减排措施[J].中国农学通报,2021,37(15):72-77.

[19]姚泽秀.不同植茶年限土壤氮素矿化与微生物群落特征[D].浙江农林大学,2019.

[20]齐蒙,吴慧平,李叶云,等.中国茶园杂草有效名录[J].中国茶叶,2019,41(03):29-35.

[21]林威鹏,凌彩金,郜礼阳,等.茶园杂草防控技术研究进展[J].中国茶叶,2020,42(01):20-28.

[22]孙永明,李小飞,俞素琴,等.茶园不同控草措施效果比较[J].南方农业学报,2017,48(10):1832-1837.

[23]徐华勤,肖润林,宋同清,等.稻草覆盖与间作三叶草对丘陵茶园土壤微生物群落功能的影响[J].生物多样性,2008(02):166-174.

[24]张永志,王淼,高健健,等.间作鼠茅对茶园杂草抑制效果和茶叶品质与产量指标的影响[J].安徽农业大学学报,2020,47(03):340-344.

[25]蒋慧光,张永志,朱向向,等.防草布在幼龄茶园杂草防治中的应用初探[J].茶叶学报,2017,58(04):189-192.

[26]陈宗懋,陈雪芬.茶树病害的诊断和防治[M].上海:上海科技出版社,1990.

[27]静冈县茶业会务所.茶树病虫害防除[M].4版.田中屋印刷所,1983.

[28]Zhao X Z, Zhuo C, Lu Y, et al. Investigating the antifungal activity and mechanism of a microbial pesticide Shenqinmycin against Phoma sp [J]. Pesticide Biochemistry and Physiology, 2018,147:46-50.

[29]Zhao L, Li Y F, Ji C Y, et al. Identification of the pathogen responsible for tea white scab disease [J]. Jouurnal of Phytopathology, 2020,168(01):28-35.

[30]唐美君,郭华伟,姚惠明,等.近30年我国茶树新增病害名录[J].中国茶叶,2019,41(10):14-15,20.

[31]王玉春,刘守安,卢秦华,等.中国茶树炭疽菌属病害研究进展及展望[J].植物保护学报,2019,46(05):954-963.

[32]Zhang G H, Yuan Z J, Yin K S, et al. Asymmetrical reproductive interference between two sibling species of tea looper: Ectropis grisescens and Ectropis obliqua[J]. Bulletin of Entomological Research, 2016, -1:1-8.

[33]Li Z Q, Cai X M, Luo Z X, et al. Geographical Distribution of Ectropis grisescens (Lepidoptera: Geometridae) and Ectropis obliqua in China and Description of an Efficient Identification Method[J]. Journal of Economic Entomology, 2019, 112(01):277-283.

[34]Luo Z X, Li Z Q, Cai X M, et al. Evidence of Premating Isolation Between Two Sibling Moths: Ectropis grisescens and Ectropis obliqua (Lepidoptera: Geometridae) [J]. Journal of Economic Entomology, 2017,110(06):2364-2370.

[35]Luo Z X, Magsi F H, Li Z Q, et al. Development and Evaluation of Sex Pheromone Mass Trapping Technology for Ectropis grisescens: A Potential Integrated Pest Management Strategy[J]. Insects, 2019,11(01):15.

[36]陈宗懋,蔡晓明,周利,等.中国茶园有害生物防控40年[J].中国茶叶,2020,42(01):1-8.

[37]边磊,苏亮,蔡顶晓.天敌友好型LED杀虫灯应用技术[J].中国茶叶,2018,40(02):5-8.

[38]边磊.茶小绿叶蝉天敌友好型黏虫色板的研发及应用技术[J].中国茶叶,2019,41(03):39-42.

[39]Bian L, Cai X M, Luo Z X, et al. Sticky card for Empoasca onukii with bicolor patterns captures less beneficial arthropods in tea gardens[J]. Crop Protection, 2021, 149:105761.

[40]唐美君,郭华伟,葛超美,等. EoNPV对灰茶尺蠖的致病特性及高效毒株筛选[J].浙江农业学报,2017,29(10):1686-1691.

[41]张洪,张孟婷,王福楷,等.4种间作作物对夏秋季茶园主要叶部病害发生的影响[J].茶叶科学,2019,39(03):318-324.

[42]阮建云,马立锋,伊晓云,等.茶树养分综合管理与减肥增效技术研究[J].茶叶科学,2020,40(01):85-95.

[43]伊晓云.茶园有机肥种类与施用比例效果研究[D].中国农业科学院,2021.

[44]Dong F, Hu J H, Shi Y Z, et al. Effects of nitrogen supply on flavonol glycoside biosynthesis and accumulation in tea leaves (Camellia sinensis)[J]. Plant Physiology and Biochemistry, 2019, 138:48-57.

[45]Ma L F, Shi Y Z, Ruan J Y. Nitrogen absorption by field-grown tea plants (Camellia sinensis) in winter dormancy and utilization in spring shoots[J]. Plant and Soil, 2019, 442(1-2):127-140.

[46]向芬,李维,刘红艳,等.氮肥减施对茶园土壤细菌群落结构的影响研究[J].生物技术通报,2021,37(06):49-57.

[47]杨海滨,李中林,徐泽,等.施肥对富硒茶园茶叶硒含量、养分和品质的影响[J].中国农业科技导报,2018,20(05):124-131.

[48]周波,陈勤,陈汉林,等.广东单丛茶区化肥减施增效技术模式研究[J].茶叶科学,2020,40(05):607-616.

[49]马立锋,倪康,伊晓云,等.浙江茶园化肥减施增效技术模式及示范应用效果[J].中国茶叶,2019,41(10):40-43.

[50]Wang Y J, Hu X., Hou Z W, et al. Discrimination of nitrogen fertilizer levels of tea plant (Camellia sinensis) based on hyperspectral imaging[J]. Journal of Science Food Agricultural, 2018,98(12):4659-4664.

[51]Wang Y J, Jin G., Li L Q, et al. NIR hyperspectral imaging coupled with chemometrics for nondestructive assessment of phosphorus and potassium contents in tea leaves[J]. Infrared Physics & Technology, 2020, 108:103365.

[52]Sonobe R, Hirono Y, Oi A. Quantifying chlorophyll-a and b content in tea leaves using hyperspectral reflectance and deep learning[J]. Remote Sensing Letters, 2020, 11(10):933-942.

[53]Ning J M, Sheng M G., Yi X Y, et al. Rapid evaluation of soil fertility in tea plantation based on near-infrared spectroscopy[J]. Spectroscopy Letters, 2018, 51(09):463-471.

[54]潘梅,李光辉,周小波,等.基于机器视觉的茶园害虫智能识别系统研究与实现[J].现代农业科技,2019(18):229-230,233.

[55]赵小娟,叶云,冉耀虎.基于物联网的茶树病虫害监测预警系统设计与实现[J].中国农业信息,2019,31(06):107-115.

[56]陈玉.基于物联网技术的智慧茶园管理系统设计[D].曲阜师范大学,2020.

[57]WANG H J, HUAJ J, JIANG YW, et al. Influence of fixation methods on the chestnut-like aroma of green tea and dynamics of key aroma substances[J/OL]. Food Research International, 2020, 136:109479.

[58]陈佳瑜, 张铭铭, 江用文,等. 电磁滚筒变温/热风耦合干燥技术对绿茶栗香形成的影响[J]. 现代食品科技, 37(2):15.

[59]张铭铭, 江用文, 滑金杰,等. 干燥方式对绿茶栗香的影响[J]. 食品科学, 41(15):9.

[60]Xiao Y, Li M, Liu Y, et al. The effect of Eurotium cristatum (MF800948) fermentation on the quality of autumn green tea[J]. Food Chemistry, 2021, 358(2):129848.

[61]Lin C B , Fei L C , Yy B , et al. Oxygen-enriched fermentation improves the taste of black tea by reducing the bitter and astringent metabolites - ScienceDirect[J]. Food Research International, 2021.

[62]Hou Z W , Wang Y J , Xu S S , et al. Effects of dynamic and static withering technology on volatile and nonvolatile components of Keemun black tea using GC-MS and HPLC combined with chemometrics[J]. LWT- Food Science and Technology, 2020:109547.

[63]Jin G , Wang Y J , Li M , et al. Rapid and real-time detection of black tea fermentation quality by using an inexpensive data fusion system[J]. Food Chemistry, 2021.

[64]罗玲娜. 白茶连续化生产线及LED光质萎凋工艺与品质的研究[D].福建农林大学,2015.

[65]林清霞,项丽慧,王丽丽,杨军国,宋振硕,陈林.萎凋温度对茶鲜叶萎凋失水及白茶品质的影响[J].浙江大学学报(农业与生命科学版),2019,45(04):434-442.

[66]陈建平. 武夷岩茶做青自动化智能化控制关键技术研究及其应用[D].福建农林大学,2017.

[67]魏子淳,林冬纯,于学领,项应萍,林宏政,郝志龙.乌龙茶智能化做青技术研究进展[J].亚热带农业研究,2021,17(01):34-39.

[68]刘盼盼,郑鹏程,龚自明,冯琳,郑琳,高士伟,滕靖,王雪萍,陈军海.青砖茶渥堆工艺优化及风味物质分析[J].中国食品学报,2021,21(08):224-234.

[69]肖力争,刘仲华,李勤.黑茶加工关键技术与产品创新[J].中国茶叶,2019,41(02):10-13+16.

[70]纵榜正. 闷黄通气条件对黄茶感官及滋味化学品质的影响研究[D].浙江大学,2020.

[71]范方媛,杨晓蕾,龚淑英,郭昊蔚,李春霖,钱虹,胡建平.闷黄工艺因子对黄茶品质及滋味化学组分的影响研究[J].茶叶科学,2019,39(01):63-73.

[72]郭向阳,宛晓春.焙火程度对黄大茶挥发性香气成分的影响[J].现代食品科技,2019,35(10):235-245.

[73]Wei Y , Fang S , Jin G , et al. Effects of two yellowing process on colour, taste and nonvolatile compounds of bud yellow tea[J]. International Journal of Food Science & Technology, 2020.

[74]胡欣,卫聿铭,方仕茂,王玉洁,许姗姗,宁井铭.颗粒形绿茶连续化做形技术研究[J].中国茶叶加工,2020(03):27-34.

[75]赖建红,卓超,王绍树,白艳,汤丹. 安吉白茶连续化加工技术推广成效与经验[J]. 中国茶叶, 2016, 38(8):2.

[76]金晶,王岳梁,罗列万.工夫红茶全程连续自动化加工生产线工艺技术与实践[J].中国茶叶加工,2016(06):51-55.

[77]赵进,张越,赵丽清,王士彪,李杰.茶叶揉捻机组自动控制系统设计[J].中国农机化学报,2019,40(02):140-144.

[78]Wang Y , Liu Y , Cui Q , et al. Monitoring the withering condition of leaves during black tea processing via the fusion of electronic eye (E-eye), colorimetric sensing array (CSA), and micro-near-infrared spectroscopy (NIRS) - ScienceDirect[J]. Journal of Food Engineering, 2021, 300.

[79]刘仲华.中国茶叶深加工40年[J].中国茶叶,2019,41(11):1-7,10.

[80]刘仲华,张盛,刘昌伟,等.茶叶功能成分利用“十三五”进展及“十四五”发展方向[J].中国茶叶,2021,43(10):1-9.

[81]沙跃兵, 没食子儿茶素(GC)等三种非表型儿茶素单体化合物标准物质研制. 浙江省,浙江省计量科学研究院,2019-05-08.

[82]薛金金,尹鹏,张建勇,等.植物源多酚氧化酶氧化儿茶素形成茶黄素和聚酯型儿茶素的研究[J].食品工业科技,2019,40(20):76-81.

[83]成都华高生物制品有限公司.一种茶多糖的提取方法:CN109320629A[P].2020-07-24.

[84]信阳师范学院.一种茶多糖的提取方法:CN108250316A[P].2018-07-06.

[85]湘丰茶业集团有限公司,湖南农业大学.一种从茶渣中提取茶多糖的方法:CN111440252A[P].2020-07-24.

[86]福建省安职教育服务有限公司.一种茶多糖的提取方法:CN110862462A[P].2020-03-06.

[87]尹军峰,许勇泉,张建勇,等.茶饮料与茶食品加工研究“十三五”进展及“十四五”发展方向[J].中国茶叶,2021,43(10):18-25.

[88]王秀萍,朱海燕,刘恋.古丈毛尖绿茶冷泡饮用方法初探[J].茶叶学报,2015,56(03):170-178.

[89]POLIKOVSKY M, FERNAND F, SACK M, et al. In silico food allergenic risk evaluation of proteins extracted from macroalgae Ulva sp. with pulsed electric fields[J]. Food Chemistry, 2018, 276:735-744.

[90]赵文净, 刘祖锋. 木瓜蛋白酶对白茶浸提液中茶多酚含量的影响[J].食品研究与开发, 2015, 36(21): 60-62.

[91]ZHU Y B, ZHANG Z Z, YANG Y F, et al. Analysis of the aroma change of instant green tea induced by the treatment with enzymes from Aspergillus niger, prepared by using tea stalk and potato dextrose medium[J]. Flavour and Fragrance Journal,2017, 32(6): 451-460.

[92]饶建平. 固定化单宁酶澄清茶汤工艺条件的研究[J].茶叶学报, 2018, 59(1): 53-56.

[93]龚玉雷. 纤维素酶和果胶酶复合体系在茶叶提取加工中的应用研究[D].杭州:浙江工业大学, 2013.

[94]ZHANG L Z, NI H, ZHU Y F, et al. Characterization of aromas ofinstant Oolong tea and its counterparts treated with two crude enzymes from Aspergillus niger [J/OL]. Journal of Food Processing and Preservation, 2017, 42(2): e13500.

[95]LECLERCQ S, MILO C, REINECCIUS GA. Effects of crosslinking, capsule wall thickness, and compound hydrophobicity on aroma release from complex coacervate microcapsules[J]. Journal of Agricultural and Food Chemistry, 2009, 57 (4): 1426-1432.

[96]蒋艾青, 欧阳晓江.一种铁观音速溶茶粉的加工方法: CN201010578004X[P]. 2011-06-15.

[97]ZHANG Y N, YIN J F, CHEN J X, et al. Improving the sweet aftertaste of green tea infusion with tannase[J]. Food Chemistry, 2016, 192: 470-476.

[98]LIN X R, CHEN Z Z, ZHANG Y Y, et al. Comparative characterization of green tea and black tea cream: Physicochemical and phytochemical nature[J]. Food Chemistry, 2015, 173: 432-440.

[99] IKEDA M, UEDA-WAKAGI M, HAYASHIBARA K, et al. Substitution at the C-3 position of catechins has an influence on the binding affinities against serum albumin[J/OL]. Molecules, 2017, 22 (2): 314. https://doi.org/10.3390/molecules22020314.

[100] LI J J, XIAO Q, HUANGYF, et al. Tannase application in secondary enzymatic processing of inferior Tieguanyin Oolong tea[J]. Electronic Journal of Biotechnology, 2017, 28: 87-94.

[101] FU Y Q, WANG J Q, CHEN J X, et al. Effect of baking on the flavor stability of green tea beverages[J/OL]. Food Chemistry, 2020, 331: 127258.

[102] 尹军峰.新式茶饮业现状与发展趋势[J].中国茶叶,2021,43(08):1-6.

[103] IKO S, RYOHEI M, SHIN-ICHIRO K, et al. Novel method for mproving the water dispersibility and flowability of fine green tea owder using a fluidized bed granulator[J]. Journal of Food Engineering, 2017, 206: 118-124.

[104] LI Y, XIAO J H, Tu J, et al. Matcha-fortified rice noodles: Characteristics of in vitro starch digestibility, antioxidant and eating quality[J/OL]. LWT-Food Science and Technology, 2021,149: 111852.

[105] 蔡浩锋. 绿茶微粉及有效成分环糊精超分子研究[D]. 南京: 南京师范大学, 2017.

[106] 安琪酵母股份有限公司. 一种色泽热稳定的抹茶的制备方法和应用: CN112515012A[P]. 2021-03-19.

来源:茶业管理评论

如涉及版权问题请联系删除

找到约83条结果 (用时 0.004 秒)
没有匹配的结果
没有匹配的结果
没有匹配的结果